LEBANESE AMERICAN UNIVERSITY DIVISION OF COMPUTER SCIENCE AND MATHEMATICS
 MATH 201 - CALCULUS 3
 EXAM 2 - SAMPLE QUESTIONS

1. a. Show that the series $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{3 n^{2}+5 n+1}$ converges absolutely.
b. Show that the series $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln (n)}$ converges conditionally.
c. Determine convergence or divergence of the series $\sum_{n=0}^{\infty} \frac{n^{2}}{(2 n)!}$.
d. Determine convergence or divergence of the series $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2+\cos (n)}$.
2. Find the radius and interval of convergence of the following power series:
a. $\sum_{n=1}^{\infty} \frac{(-3)^{n}}{n}(x-2)^{n}$
b. $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{\sqrt{n+1}}(2 x-1)^{n}$
3. a. Write the Maclaurin series for the function $f(x)=x e^{x}$ using any method you like, and determine the values of x for which the series converges to $f(x)$.
b. Find the value of the infinite sum $\sum_{n=1}^{\infty} \frac{n+1}{n!}$. (Hint: Use differentiation)
4. a. Find the third Maclaurin polynomial of the function $f(x)=\sin (2 x)$
b. Use it to approximate the definite integral $\int_{1}^{2} \frac{\sin (2 x)}{x} d x$
5. a. Find the Taylor series of the function $f(x)=\ln (x)$ with center $a=1$.
b. Use part a to write $\ln 2$ as an infinite series.
c. Using a polynomial approximation of degree $3 \operatorname{toln}(x)$, find an approximate value of $\ln 2$.
