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EXAM 2 – SAMPLE QUESTIONS 

1. a. Show that the series 2
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b. Show that the series 
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c. Determine convergence or divergence of the series
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d. Determine convergence or divergence of the series
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2. Find the radius and interval of convergence of the following power series: 
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3. a. Write the Maclaurin series for the function ( ) xf x xe= using any method you like, 

and determine the values of x for which the series converges to ( )f x . 

 b. Find the value of the infinite sum
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4. a. Find the third Maclaurin polynomial of the function ( ) sin(2 )f x x=  

 b. Use it to approximate the definite integral 
2

1

sin(2 )x dx
x∫  

5. a. Find the Taylor series of the function ( ) ln( )f x x= with center 1a = . 
 
 b. Use part a to write ln 2  as an infinite series. 
 
 c. Using a polynomial approximation of degree 3 to ln( )x , find an approximate value 

of ln 2 . 

Eres
LAU Libraries Copyright Protected


